Exam 001
Bishal's Maths Tuition (+91-8910047668)
MATHEMATICS
CLASS IX CBSE Board
Jawahar Navodaya Vidyalaya
Linear equations in two variables and Lines and Angles
Time allowed : 2 hours
Maximum Marks : 60
General Instructions :
1. All questions are compulsory.
2. This question paper consists of 12 questions of 5 marks each
3. Use of calculator is not permitted.
SECTION – A
marks
Question numbers 1 to 12 carry 5 marks each.
- Write each of the following equations in the form of linear equation and indicate a,b,c in each case
a)
b) - It is given and is produced to point P. Draw a figure from the given information, if ray bisects , find and reflex
- Find the value of if is a solution of the equation
- If , then prove that is a line.
- The taxi fare in a city is as follows. For the first Kilometer, the fare is ₹18 and for the subsequent distance it is ₹15 per km. Write the linear equation for this information and draw its graph.
- The linear equat that converts Celsius to Fahrenheit i) If the temp is , what is the temperature in Fahrenheit?
ii) Is there a temperature which is numerically the same in both Fahrenheit and Celsius. If yes, find it. - is a line, Ray is to line . is another ray lying between rays and . Prove that
- Solve the equation and represent the solution on
i) the number line
ii) cartesian plane - and . Find
- The sides and of are produced to points and resp. If bisectors
and of and resp. meet at point , then prove that
- Side of is produced to a point . If the bisecture of and meet at point T. Then prove that
- and are two mirror placed parallel to each other. An incident ray strikes the mirror at , the reflected ray moves along the path and strikes the mirror at and again reflects back along . Prove that